

Roll No.

ANNA UNIVERSITY (UNIVERSITY DEPARTMENTS)

B.E. (Full Time) - END SEMESTER EXAMINATIONS, APR / MAY 2024

Third Semester
MA5301 TRANSFORM TECHNIQUES AND STATISTICS
(Regulations 2019)

(Students are allowed to use statistical tables)

Time: 3hrs

Max. Marks: 100

CO 1	It enables the students to represent any periodic function as a sum of trigonometric sines and cosines.
CO 2	It enables the students to calculate the frequency spectrum of a signal that changes over time using Fourier transforms.
CO 3	It familiarizes the students with probability distributions that are apt for various real time situations.
CO 4	It equips the students to determine the correlation and regression for bivariate random variables with given probability distributions.
CO 5	It imparts the knowledge of various test statistics used in hypothesis testing for mean and variances of large and small samples.

BL – Bloom's Taxonomy Levels

(L1 - Remembering, L2 - Understanding, L3 - Applying, L4 - Analysing, L5 - Evaluating, L6 - Creating)

PART- A (10 x 2 = 20 Marks)
(Answer all Questions)

Q. No	Questions	Marks	CO	BL												
1	If $f(x)$ is periodic with period 5 such that $f(1) = -2, f(2) = -3$ & $f(3) = -4$, what is $f(2024)$?	2	CO1	L1												
2	If $f(x) = \sin(x)$ ($0 \leq x \leq \pi$), find the root mean square value of the function.	2	CO1	L1												
3	State Parseval's identity for Fourier Transform.	2	CO2	L1												
4	State Fourier integral theorem.	2	CO2	L1												
5	If $f(x) = k + 1$ ($0 \leq x \leq 1$) is a probability density function (p.d.f), find the value of k .	2	CO3	L1												
6	If the following table furnishes a probability mass function (p.m.f), find the value of k .	2	CO3	L1												
	<table border="1" style="display: inline-table; vertical-align: middle;"> <tr> <td>x</td><td>1</td><td>2</td><td>3</td><td>4</td><td>5</td></tr> <tr> <td>$p(x)$</td><td>$k+1$</td><td>$k+2$</td><td>$k+3$</td><td>$k+4$</td><td>$k+5$</td></tr> </table>	x	1	2	3	4	5	$p(x)$	$k+1$	$k+2$	$k+3$	$k+4$	$k+5$			
x	1	2	3	4	5											
$p(x)$	$k+1$	$k+2$	$k+3$	$k+4$	$k+5$											
7	What do you mean by a joint probability mass function (joint pmf) of a discrete two dimensional random variable?	2	CO4	L1												
8	Does $f(x) = e^{-(x+y)}$ ($0 \leq x < \infty$ & $0 \leq y < \infty$) represent a joint probability density function (joint pdf)? Justify your answer.	2	CO4	L1												
9	What is a population?	2	CO5	L1												
10	What is the level of significance in Hypothesis testing?	2	CO5	L1												

PART- B (5 x 13 = 65 Marks)

Q. No	Questions	Marks	CO	BL
11 (a) (i)	Find the Fourier series of the function $f(x) = x^2$ ($-\pi < x < \pi$).	8	CO1	L3
(ii)	Find the half-range Fourier sine series of the function	5	CO1	L3

$$f(x) = x \quad (0 < x < \pi).$$

(OR)

11 (b) (i)	Find the Fourier series of the function $f(x) = x \quad (-\pi < x < \pi).$	8	CO1	L3									
(ii)	Find the half-range Fourier cosine series of the function $f(x) = x \quad (0 < x < \pi).$	5	CO1	L3									
12 (a) (i)	Find the Fourier transform of the function $f(x) = 1 - x \quad (-1 < x < 1)$ and hence evaluate $\int_0^{\infty} \left[\frac{\sin x}{x} \right]^4 dx.$	8	CO2	L3									
(ii)	Find the Fourier transform of the function $f(x) = 1 \quad (-1 < x < 1).$	5	CO2	L3									
(OR)													
12 (b) (i)	Use Fourier transform technique to evaluate $\int_0^{\infty} \left[\frac{1}{(x^2+16)(x^2+25)} \right] dx.$	8	CO2	L3									
(ii)	Find the Fourier Transform of the function $f(x) = 1 - x^2 \quad (-1 < x < 1).$	5	CO2	L3									
13 (a) (i)	If X is a continuous random variable that is uniformly distributed, find the Mean and Variance of X.	8	CO3	L3									
(ii)	A random variable follows binomial distribution with mean 4 and variance 2. Find the parameters n, p and q.	5	CO3	L3									
(OR)													
13 (b) (i)	If X follows Poisson distribution, find the Mean and Variance of X.	8	CO3	L3									
(ii)	Find the mean and variance from the Moment Generating function (MGF) of normal distribution.	5	CO3	L3									
14 (a) (i)	If the random variable (X, Y) has the following joint probability density function, find the correlation between X and Y. $f(x, y) = x + y \quad (0 < x < 1 \text{ & } 0 < y < 1).$	8	CO4	L3									
(ii)	What is the point of intersection of two regression lines? In a correlation analysis, the regression lines are $x + y = 7 \quad \& \quad x - y = 1$ Find the means of X and Y.	5	CO4	L3									
(OR)													
14 (b) (i)	The joint probability density function of (X, Y) is given by $f(x) = ke^{-(x+y)}.$ Are X and Y independent? Justify your answer.	8	CO4	L3									
(ii)	Describe regression lines of X on Y and of Y on X.	5	CO4	L3									
15 (a) (i)	The average marks scored by 32 boys is 72 with a standard deviation of 8 while the average marks scored by 36 girls is 70 with a standard deviation of 6. Test at 0.01 level of significance whether the boys perform better than girls. (Critical value $z_{\alpha} = 2.33$)	8	CO5	L3									
(ii)	Explain TypeI Error and TypeII error.	5	CO5	L3									
(OR)													
15 (b) (i)	Given the following data, test at 0.01 level of significance whether the two attributes literacy and smoking are independent.	8	CO5	L3									
	<table border="1"> <thead> <tr> <th></th> <th>Smokers</th> <th>NonSmokers</th> </tr> </thead> <tbody> <tr> <td>Literates</td> <td>83</td> <td>57</td> </tr> <tr> <td>Illiterates</td> <td>45</td> <td>68</td> </tr> </tbody> </table>		Smokers	NonSmokers	Literates	83	57	Illiterates	45	68			
	Smokers	NonSmokers											
Literates	83	57											
Illiterates	45	68											
	(Critical value = 3.84)												

PART- C (1 x 15 = 15 Marks)
 (Q.No.16 is compulsory)

Q. No	Questions	Marks	CO	BL																
16 (i)	<p>Given the following joint probability mass function (joint pmf), compute the marginal probability mass functions of X and Y. Are the variables X and Y independent? Justify your answer.</p> <table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <th style="text-align: center;">$p(x,y)$</th> <th style="text-align: center;">$y=0$</th> <th style="text-align: center;">$y=1$</th> <th style="text-align: center;">$Y=2$</th> </tr> <tr> <td style="text-align: center;">$x=0$</td> <td style="text-align: center;">0.10</td> <td style="text-align: center;">0.04</td> <td style="text-align: center;">0.06</td> </tr> <tr> <td style="text-align: center;">$x=1$</td> <td style="text-align: center;">0.06</td> <td style="text-align: center;">0.20</td> <td style="text-align: center;">0.02</td> </tr> <tr> <td style="text-align: center;">$x=2$</td> <td style="text-align: center;">0.08</td> <td style="text-align: center;">0.30</td> <td style="text-align: center;">0.14</td> </tr> </table>	$p(x,y)$	$y=0$	$y=1$	$Y=2$	$x=0$	0.10	0.04	0.06	$x=1$	0.06	0.20	0.02	$x=2$	0.08	0.30	0.14	8	CO4	L5
$p(x,y)$	$y=0$	$y=1$	$Y=2$																	
$x=0$	0.10	0.04	0.06																	
$x=1$	0.06	0.20	0.02																	
$x=2$	0.08	0.30	0.14																	
16 (ii)	<p>Using the following data, compute the first two harmonics in the Fourier series of the function $f(x)$. Assume that period of the function is 2π.</p> <table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <th style="text-align: center;">x</th> <th style="text-align: center;">0</th> <th style="text-align: center;">$\pi/2$</th> <th style="text-align: center;">π</th> <th style="text-align: center;">$3\pi/2$</th> <th style="text-align: center;">2π</th> </tr> <tr> <td style="text-align: center;">$f(x)$</td> <td style="text-align: center;">0</td> <td style="text-align: center;">2</td> <td style="text-align: center;">0</td> <td style="text-align: center;">0</td> <td style="text-align: center;">2</td> </tr> </table>	x	0	$\pi/2$	π	$3\pi/2$	2π	$f(x)$	0	2	0	0	2	7	CO1	L5				
x	0	$\pi/2$	π	$3\pi/2$	2π															
$f(x)$	0	2	0	0	2															

